
S E M I E M P I R I C A L  S O L U T I O N  O F  H E A T - T R A N S F E R  

P R O B L E M S  F O R  N U C L E A T E  B O I L I N G  

I .  V.  D o m a n s k i i  UDC 536.423.1 

On the basis of semiempir ica l  turbulent t ranspor t  theory, with the dynamic velocity expressed 
in te rms  of the energy dissipation factor  controlling the t ranspor t  process ,  equations are  de- 
r ived for  the hea t - t r ans fe r  coefficient for the nucleate boiling of liquids in the cases  of pool 
boiling and boiling in ver t ica l  pipes. 

The hea t - t r ans fe r  p rocess  associated with the nucleate boiling of a liquid is real ized as a resul t  of 
both convection and the generat ion of vapor, which contributes to the formation and growth of vapor bubbles 
[1]. However, for moderate  heat inputs and relat ively low pressu res ,  such that the density of vaporizat ion 
centers  is small,  heat t ransfer  takes place pr imar i ly  due to convection. The heat res is tance  in this case 
is concentrated mainly in a wall layer  of liquid, the thickness of which is determined by the turbulence state 
of its vapor bubbles formed on the hea t - t r ans fe r  surface.  If we assume that the hea t - t r ans fe r  law for 
nucleate boiling is consistent with the laws of convective t ransport ,  we can analyze this p rocess  by the 
general  methods used for the solution of such problems.  

We propose to analyze the nucleate boiling p rocess  on the basis of the semiempir ica l  theory of tur -  
bulent t ranspor t  [2-4]. The hea t - t r ans fe r  laws for steady liquid flow over a hea t - t r ans fe r  surface are  
descr ibed with reasonable accuracy  by means of this theory when the charac te r i s t i c s  of the turbulent fluc- 
tuations in the flow can be expressed in t e rms  of the tangential s t r e s se s  r 0 and when the dynamic velocity 
is given by the relat ion 

1//- 
/ A ,  ~ �9 

p 

It has been shown in a ser ies  of examples in [5-8] that if the dynamic velocity is expressed in t e rms  of the 
t ranspor t -cont ro l l ing  energy dissipation E 0 (energy dissipation in the wall layer) in the form 

i/§ u, = , (I) 
P 

the semiempir iea l  theory can also be used to advantage for the solution of many other problems in heat 
t ransfer  and hydrodynamies (heat t ransfer  at the wall of a bubble tower or in equipment that uses mixers ,  
heat t ransfer  and drag in g a s - l i q u i d  flows, etc.); the hea t - t r ans fe r  p rocess  in all these eases  is descr ibed 
by the equation [9] 

c,, v Pr (2) 

Here  r = f(u., Pr) ;  the form of this function is given in [6, 9] and elsehwere.  The magnitude of the energy 
dissipation controlling the t ranspor t  p rocess  for steady liquid flow over a plane hea t - t r ans fe r  surface and in 
pipes is equal to the energy dissipation in the laminar  substrate  (E 0 = r2/p~) and can be calculated in the 
same way as the rat io of the total f low-dissipated power 

N = ToSW (3) 

Lensovet  Technological  Institute, Leningrad. Transla ted  f rom Inzhenerno-Fiz icheski i  Zhurnal, 
Vol. 19, No. 4, pp. 629-636, October, 1970. Original ar t ic le  submitted November 11, 1969. 

�9 197S Consultants Bureau, a division of Plenum Publishing Corporation, 227 West I7th Street, New York, 
N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without 
permission of the publisher. A copy of this article is available from the publisher for $15.00. 

1238 



to the vo lume  of the wall  l a y e r  
V s6~, 

N 
E 0 ~ - - -  , 

V 

As we know, the re la t ionsh ip  be tween the t h i cknes se s  of the h y d r o d y n a m i c  and t h e r m a l  boundary  l a y e r s  
is e x p r e s s e d  as  fol lows:  

5h-- 5 t Pr ~/3. 

The th ickness  of the t h e r m a l  boundary  l aye r  (X/c~) can be r e p r e s e n t e d  as  fol lows on the bas i s  of (2): 

6t = v 
u, Pr ' 

and, s ince  r  ~ P r - 1 / 3 ,  it fol lows that 
'V 

5 h N - -  

Taking (3), (4), and (6) into account ,  we find that Equat ion  (5) takes  the f o r m  

N T0wu, 
E0 

V v 

Af t e r  the subs t i tu t ion  of this e x p r e s s i o n  into (1) we a r r i v e  at the r e l a t i o n  

(4) 

(5) 

(6) 

- Y -  = p (7) 

For  the m o r e  gene ra l  c a s e  in.which the wall  l aye r  contains  a un i fo rmly  d i s t r ibu ted  tu rbu lence  s o u r c e  
of total  power  N we r ead i ly  deduce  the fol lowing r e l a t i on  f r o m  e x p r e s s i o n s  (1), (4), (5), and (6) fo r  the de-  
t e r m i n a t i o n  of u , :  

.3/ N 
u, ~ - t /  (s) 

t sp 

Th i s  r e l a t i on  can be used  in conjunct ion  with Eq.  (2) to ana lyze  the h e a t - t r a n s f e r  p r o c e s s  in nucleate  
boil ing if the v a p o r i z a t i o n  c e n t e r s  a r e  r e p r e s e n t e d  as un i fo rmly  d i s t r ibu ted  tu rbu lence  s o u r c e s  of power  

Az' 
~g 

The n u m b e r  z '  of va po r i z a t i on  c e n t e r s  ac t ing s imu l t aneous ly  is r e l a t ed  to the total  n u m b e r  z of c e n t e r s  by 
the e x p r e s s i o n  

T h 

and, s ince  r n = l / f ,  we have 

N - -  Azf. (9) 

With r e g a r d  for  Eq. (9), e x p r e s s i o n  (8) a s s u m e s  the f o r m  

u". ~ ~ / /  Afn (10) 
9 

In o r d e r  to ca lcu la te  the work  A done by one bubble in g rowing  on the h e a t - t r a n s f e r  su r f ace  up to the ins tant  

of b reakof f  we use  the fol lowing e x p r e s s i o n  c h a r a c t e r i z i n g  the g rowth  of a vapor  bubble [10]: 

i~ - -  (IT !/2, 

in which 

V / 2 ~ ) ~ a r  a = = , (11)  
r9 r 

where  fl i s  a coef f ic ien t  depending only on the e x t r e m e  contac t  angle.  This  equat ion impl ies  that the in-  
s t an taneous  growth  r a t e  of the vapo r  bubble is  
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dR a ~ 
U - -  

dT 2R 

The drag force of the bubble surface in the liquid can be expressed approximately by the relation 

(12) 

or, taking the dependence (12) into account, 

F ~ p u 2 R  ~ 

F ~ pah (13) 

Ro 

After integration with regard  for (13) the expression for the work A = ~b FdR acquires the form A ~ pa4(R0 

- Rb) , where R6is the radius of the bubble nucleus. 

Inasmuch as R 0 >>Rb, we can assume that 

A ~ pa4Ro . (14) 

After the substitution of (14) into Eq .  (10), the lat ter  assumes  the form 

u: N ~/ a4Rofn . (15) 

It has been verif ied experimental ly in [11, 12] that the product R0f = const over a wide range of var ia -  
tion of heat inputs and it can be calculated [13] according to the equation 

{ ~gSp t'/4. (16) = 2Rof = 0.59 [ U o 
f 

Using expressions (11), (16), we readily reduce relat ion (15) to the form 
= ( ~ / 2/3 u: k - -  u~/3 A T  2/a n I/3 

\ r P v /  

and by substitution of uT~ into Eq. (2) we obtain the following relation for a: 

~?/s tto~/s Pr AT2/3 nl ,a cz = k - -  (17) 
v (rpO~/~ , 

In order  to check the validity of Eq. (17) it suffices to compare  it with the published experimental  and theo- 
ret ical  data on the influence of the bubble generation frequency f, density n of vaporizat ion centers ,  and 
tempera ture  differential AT on the hea t - t r ans fe r  coefficient.  

It follows f rom Eq. (17) that for moderate  heat inputs the hea t - t r ans fe r  coefficient is independent of 
f. This fact has been established experimentally in [14]. 

A simultaneous measurement  of the hea t - t rans fe r  coefficient and the number of active vaporization 
centers  as a function of the time in prot rac ted  water boiling with q = const has been ca r r i ed  out in [15]. It 
follows from the experimental  data of [15] for a ~ nl/5.  An analogous relation is also obtained from (17) 
for q = const.  In [12] the relation a ~ AT2/3n 1/3 is given, which is completely consistent  with (17); in [16- 
18] the power exponents differ, but only slightly. 

We infer f rom the foregoing compar isons  that the solution of the hea t - t r ans fe r  problem for nucleate 
pool boiling in the regime of dominant heat t ransfer  is theoretically possible by means of the semiempir ica l  
turbulent t ranspor t  theory, which yields good resul ts .  In order  to determine the number of vaporizat ion 
centers  we use the following approximate relation given in [19]: 

n = 6.25. IO-a4L ( rpvAT ~z ,  (18) 

in which L = 1 m. Equation (17) with (18) taken into account gives the relat ion a = f(AT) and cor rec t ly  r e -  
flects the influence of the physical proper t ies  of the liquid and vapor on the hea t - t r ans fe r  coefficient. 

For  the analysis  of boiling in the case of large vaporizat ion center  densities it is required, as in [1], 
to take into account the heat of formation of the bubbles growing on the hea t - t r ans fe r  surface.  
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Fig.  1~ Ratio o~/a l v e r s u s  a b / a  l. 1) According to the Kutateladze equation [21]; 
Labuntsov equation [22]; 3) au tho r ' s  equation (21). 

Fig.  2. H e a t - t r a n s f e r  coefficient  a, k W / m  2 deg, v e r s u s  mix tu re  flow veloci ty  Wmx , 
m / s e c ,  at a p r e s s u r e  of 1 .9"10 -G N / m  2. According to Eq. (21): 1) w I = 0.33; 2) 1; 
3) 2 m / s e c ;  4) according to the Bor ishanski i  equation (22). For  the dashed curve  q 
= 13.9 "105 W/m2;  for  the solid curve  q = 3.48 "105 W / m  2. 

The appl icabi l i ty  of turbulent t r anspo r t  theory for  the analys is  of nucleate pool boiling also affords 
an approach  to the solution of the h e a t - t r a n s f e r  p rob l em for  the boiling of d i rec t ional ly  flowing liquids in 
p ipes .  

For  the solution of this p rob lem we introduce an additional assumpt ion,  namely  that the h e a t - t r a n s -  
f e r  p r o c e s s  is c h a r a c t e r i z e d  by the total power  d iss ipated in the medium.  The admiss ib i l i ty  of this a s -  
sumption has  been demons t ra t ed  exper imenta l ly  in the solution of the h e a t - t r a n s f e r  p rob lem for  g a s - l i q u i d  
flows in pipes [7]. The power of one of the sources  of agitat ion of vapor  bubbles growing on the h e a t - t r a n s -  
fe r  su r face  is c h a r a c t e r i z e d  by Eq. (9). Bes ides  the la t ter ,  in an ascending flow of a v a p o r - l i q u i d  mix ture  
the power needed to t r anspo r t  the liquid upward, except for  that pa r t  used in the fo rmat ion  of a potential  
and kinetic energies ,  will be d iss ipa ted  in the liquid. For  a shor t  sect ion of pipe of height H it may  be a s -  
sumed that w v = const,  whereupon 

ad 2 nd 2 
N ' ~  (~v +wa)AP" - - - - w  z p g H - ,  

4 4 

where  Ap = p g H ( 1 -  q~) + 4r0H/d  is the p r e s s u r e  drop over  the length H. 

After suitable transformations we arrive at the expression 

N' -~ adHTowmx+ Wren0 (1 -- (p) 9gH, 

in which 

The total  power,  on the other  hand, 
r e p r e s e n t e d  in the f o r m  

~0 v W l  

w m -  ~ 1 - -qD 

characterizing the heat-transfer process in the given situation can be 

N = Azf + ndHWm~ o + W.reqD ( 1 .  T) pgH. 

In the de te rmina t ion  of the energy  diss ipat ion E 0 the f i r s t  two t e r m s  must  be r e f e r r e d  to the wall layer  
volume 7rdHSg, while the third t e rm,  which c h a r a c t e r i z e s  the power  losses  in the re la t ive  motion of the 
phases ,  mus t  be r e f e r r e d  [7, 8] to the total liquid volume in the pipe, V = (zrd2/4)H(1- ~), because  the 
re la t ive  motion el ic i ts  nea r ly  i so t ropic  turbulence.  Taking into account express ion  (7) and the one-way 
p e r m e a t i o n  of f luctuations f r o m  the flow core  to the wall l ayer  [7], we obtain the following express ion  for  

E0: 

( %wlnX ) E o = k '  Afn ' + u, +• 

and a cor responding  express ion  for the calculat ion of u , ,  taking (1), (7), and (10) into account: 
..3 [ ,a I t t ' 4  

lg 4 ~ U ,  b/, - 7  /.t, U ,  ~ -  U ,  (19) 
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where 

< "  = ~ ( , , g % ~  (1 - ~)~)'~, 

and x = 1.9 is a proport ionali ty factor  [7]. The determinat ion of the exat solution of Eq. (19) is problemat i -  
cal. However, within 3% e r r o r  limits u, can be found f rom the approximate relat ion 

u, = [(uf + u: ~ )4j3 + u:,,,]l& (20) 

Recognizing that the dimensionless temperature  r in Eq. (2) depends only ve ry  slightly on u. ,  we t r ans fo rm 
Eqs.  (20) and (2) to the following: 

a = [(~z 3 -F cz~) 4/3 H- a4re] '/4, (21) 

in which, with regard  for relat ions (2) and (7), 

ao=al ( % t  '/~. \~z  / 

The quantity a re  has to be included only for small  liquid flow velocit ies,  small  heat fluxes, and large 
volume contents of vapor, i.e., for a re  > o~ 0 and a re  > 0%. Note that in deriving Eqs.  (20) and (21) it was 
assumed that the law 2R0f = u 0 determined experimental ly for pool boiling ca r r i e s  over to the case of forced 
circulat ion of the liquid and that, in addition, the density of vaporizat ion cen te r s  is independent of the liquid 
flow velocity. These assumptions,  of course,  require  experimental  corroborat ion.  The investigation of 
[20] proves,  however, that ab~  apb , i.e., for fully developed boiling in pipes the way in which various fac-  
tors  affect the hea t - t r ans fe r  rate is the same as in boiling under f ree-convect ion (pool) conditions. More-  
over, a compar ison of relat ion (21) with the equations of Kutateladze [21] and Labuntsov [22] (Fig. 1), which 
hold for small  vapor contents, such that a re  << a0, a re  << 0%, and T 0 ~ Tl, and with the equation of Bor i -  
shanskii et al. [23]: 

a = 0.65 1 -F, 1.5.10 -s , (22) 
C~pb 

which is valid over a wide range of vapor  contents in the mixture (Fig. 2), implies that the foregoing as-  
sumptions are  reliable.  In the compar ison  of Eqs.  (21) and (22) the rat io TO/T l was calculated f rom the 
Mar t ine l l i -Ne l son  relat ion [24], and it was assumed [20] that G b = 0.65apb. 
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NOTATION 

is the vapor bubble radius;  
is the vapor bubble breakoff radius;  
is the pipe diameter ;  
is the pipe length; 
is the thickness of hydrodynamic boundary layer ;  
is the thickness of thermal  boundary layer;  
is the time; 
is the bubble growth time; 
is the bubble nucleation time; 
is the bubble formation frequency; 
is the dynamic velocity;  u 0 = 2R0f; 
is the bubble growth rate;  
is the average flow velocity of liquid; 
are  the reduced velocities of vapor and liquid; 
~s the r.elative velocity of phases;  
1S 

IS  

1S 

IS  

1S 

1S 

1S 

1S 

1S 

the velocity of vapo r - l i qu id  mixture;  
the f ree-fa l l  accelerat ion;  
the surface area;  
the tangential s t ress  at wall; 
the tangential s t r e s s  at wall during liquid flow; 
the t ranspor t -control l ing  energy dissipation; 
the work done by one bubble during growth on a hea t - t r ans fe r  surface;  
the specific heat flux; 
the number of vaporizat ion centers ;  
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T s 
AT 

P 
Pv 
A0 = P - P v ;  

ff 

oL 
r 

% 
%b 
c q  

OLre 
r 
P r  
~, k, k' 
n = z/s 

is the saturat ion t empera tu re ;  
is the t empera tu re  different ial  between wall and liquid; 
is the t rue  volumetr ic  vapor content; 
is the liquid density;  
is the vapor  density;  

IS 

IS 

IS 

IS 

iS 

IS 

IS 

IS 

IS 

iS 

IS 

IS 

iS 

the kinematic  y i scos i ty  of liquid; 
the surface  tension; 
the thermal  conductivity of liquid; 
the heat t r a n s f e r  coefficient;  
the latent heat of evaporation;  
the boiling heat-transfer coefficient; 
the pool boiling heat-transfer coefficient; 
the pipe-flow of the heat-transfer coefficient of liquid; 
the heat-transfer coefficient for vapor bubbling of liquid; 
the dimensionless temperature differential; 
the Prandtl number; 
the proportionality factors; 
the density of vaporization centers. 
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